Summary

IUPAC name1,1,2,2-tetrachloroethane
Synonyms79-34-5, InChI=1S/C2H2Cl4/c3-1(4)2(5)6/h1-2H, 1122-tetrachloroethane, 1122-tetrachloroethan
CAS number79-34-5
ChemSpider ID6342
PubChem ID6591
Molecular weight167.849 Da
FormulaC2H2Cl4
Multiplicity1
Point groupC1
Symmetry number1
Rotatable bonds1
StdInChiInChI=1S/C2H2Cl4/c3-1(4)2(5)6/h1-2H


Liquid properties

PropertyUnitT (K)ExperimentGAFF-ESP-2012OPLSCGenFFCOSMO-RSkowwinGAFF-ESPXlogP3
ρg/l293.151559.0±0.311575.7±0.12
1576.8±0.12
1586.6±0.12
ρg/l298.151587.031550.1±0.311567.3±0.12
1586.541569.5±0.12
1579.3±0.12
1517.8±0.45
ε0293.158.563.8±0.111.82
8.561.82
8.211.82
8.57
8.17
8.28
8.58
8.28
8.28
ε0298.157.913.6±0.111.82
7.881.82
8.282.02
1.65
αP0.001/K293.151.15±0.0810.92±0.022
0.96±0.042
0.90±0.022
αP0.001/K298.150.9741.19±0.0711.04±0.022
0.9690.94±0.032
1.00±0.022
1.30±0.055
κT1/GPa293.150.6510.80±0.0310.62±0.012
0.63±0.032
0.60±0.012
κT1/GPa298.150.6240.84±0.0210.67±0.012
0.6710.64±0.022
0.68±0.012
0.93±0.035
ΔHvapkJ/mol293.1544.781043.31±0.06144.07±0.372
45.17±0.842
43.91±0.032
ΔHvapkJ/mol298.1545.71442.94±0.04143.89±0.462
45.71643.72±0.392
44.521044.84±2.042
42.23±0.035
cfluidm/s293.15626.58±11.472
633.20±25.102
613.09±12.272
cfluidm/s298.15623.534,3655.73±12.302
623.624638.90±17.402
648.101,3657.08±10.852
648.211,4
log kOW298.152.39112.4012
2.3913

Flexible models Hydrogen constrained All bonds constrained.


Gas properties

PropertyUnitT (K)ExperimentG2G3G4CBS-QB3W1BDW1UB3LYP/aug-cc-pVTZBSCGenFFGAFF-BCC-2018GAFF-ESP-2018AXppAXpgAXps
EkJ/mol298.15120.0714118.2815
E-scaledkJ/mol298.15121.4715
ΔHformkJ/mol0-162.814-154.414-149.814-177.914
ΔHformkJ/mol298.15-149.410-172.314-163.914-158.314-186.314
-146.13
-149.26
-155.6±8.416
ΔGformkJ/mol298.15-82.210-102.314-93.814-90.414-118.514
ΔSformJ/mol K298.150.010-235.014-235.014-227.714-227.614
S0J/mol K298.150.3610353.3014353.3014360.6614360.7014360.0615
362.806
354.883
S0-scaledJ/mol K298.15357.7915
ZPEkJ/mol298.15102.114100.415
ZPE-scaledkJ/mol298.15103.915
CVJ/mol K298.1590.7±1.81786.31486.31492.21492.41491.615
CV-scaledJ/mol K298.1589.915
αanisoų298.152.49182.51182.4818
αxxų298.1512.211412.001812.001812.0018
αyyų298.1513.591413.571813.601813.5718
αzzų298.1511.231411.461811.461811.4618
μxxD298.1514181818
μyyD298.1514181818
μzzD298.15-1.6414-1.8418-1.8318-1.8418
θxxBuckingham298.150.10140.81180.71180.7118
θyyBuckingham298.15-1.9314-3.0518-2.7218-2.6718
θzzBuckingham298.152.31142.24182.02181.9618


References

  1. Carl Caleman and Paul J. van Maaren and Minyan Hong and Jochen S. Hub and Luciano T. Costa and David van der Spoel Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant, J. Chem. Theory Comput. 8, 61-74 (2012). DOI
  2. David van der Spoel et al. Convergence of MD simulations of liquids in different software packages, In preparation ().
  3. C. L. Yaws Yaws' Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Knovel (2009).
  4. Y. Marcus The Properties of Solvents, Wiley (1998).
  5. Nina Fischer and Paul J. van Maaren and Jonas C. Ditz and Ahmet Yildirim and David van der Spoel Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions, J. Chem. Theory Comput. 11, 2938-2944 (2015). DOI
  6. D. R. Lide CRC Handbook of Chemistry and Physics 90th edition, CRC Press: Cleveland, Ohio (2009).
  7. C. Wohlfarth Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures, Springer Verlag: http://www.springermaterials.com (2008).
  8. DECHEMA Gesellschaft fuer Chemische Technik und Biotechnologie e.V.. Thermophysical properties of pure substances & mixtures, http://i- systems.dechema.de/detherm (2011).
  9. C. L. Yaws Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Beaumont, Texas (2003).
  10. R. L. Rowley and W. V. Wilding and J. L. Oscarson and Y. Yang and N. F. Giles Data Compilation of Pure Chemical Properties (Design Institute for Physical Properties, American Institute for Chemical Engineering, New York (2012).
  11. C. L. Yaws Yaws' Handbook of Properties for Environmental and Green Engineering, William Andrew Inc.: Beaumont, Texas (2008).
  12. T. Cheng and Y. Zhao and X. Li and F. Lin and Y. Xu and X. Zhang and Y. Li and R. Wang and L. Lai Computation of octanol- water partition coefficients by guiding an additive model with knowledge., J. Chem. Inf. Model. 47, 2140-2148 (2007).
  13. C. L. Yaws Yaws' Handbook of Properties for Aqueous Systems, William Andrew Inc.: Beaumont, Texas (2012).
  14. Mohammad M. Ghahremanpour and Paul J. van Maaren and David van der Spoel The Alexandria Library: A Quantum-Chemical Database of Molecular Properties for Force Field Development, Sci. Data 5, 180062 (2018). DOI
  15. David van der Spoel and Mohammad M. Ghahremanpour and Justin Lemkul Small Molecule Thermochemistry: A Tool For Empirical Force Field Development, J. Phys. Chem. A 122, 8982–8988 (2018). DOI
  16. Knovel Knovel Critical Tables (2nd Edition), Knovel (2008).
  17. Mohammad M. Ghahremanpour and Paul J. van Maaren and Jonas C. Ditz and Roland Lindh and David van der Spoel Large-Scale Calculations of Gas Phase Thermochemistry: Enthalpy of Formation, Standard Entropy and Heat Capacity, J. Chem. Phys. 145, 114305 (2016). DOI
  18. Mohammad Mehdi Ghahremanpour and Paul J. van Maaren and Carl Caleman and Geoffrey R. Hutchison and David van der Spoel Polarizable Drude Model with s-type Gaussian or Slater Charge Density for General Molecular Mechanics Force Fields, J. Chem. Theory Comput. 14, 5553-5566 (2018). DOI