Summary

IUPAC namebut-1-ene
Synonyms106-98-9, InChI=1S/C4H8/c1-3-4-2/h3H,1,4H2,2H3, 1-butene, 1-butene, 1-buten
CAS number106-98-9
ChemSpider ID7556
PubChem ID7844
Molecular weight56.106 Da
FormulaC4H8
Multiplicity1
Point groupC1
Symmetry number1
Rotatable bonds1
StdInChiInChI=1S/C4H8/c1-3-4-2/h3H,1,4H2,2H3


Liquid properties

PropertyUnitT (K)ExperimentGAFF-ESP-2012OPLSCGenFFCOSMO-RSkowwinGAFF-ESPXlogP3
log kOW298.152.4012.402
2.403
2.404

Flexible models Hydrogen constrained All bonds constrained.


Gas properties

PropertyUnitT (K)ExperimentG2G3G4CBS-QB3W1BDW1UB3LYP/aug-cc-pVTZBSCGenFFGAFF-BCC-2018GAFF-ESP-2018AXppAXpgAXps
EkJ/mol298.15298.015287.606
E-scaledkJ/mol298.15296.886
ΔHformkJ/mol024.0521.5522.3527.7514.6514.35
ΔHformkJ/mol298.15-0.571.65-0.950.556.05-7.15-7.55
-0.18
9.19
0.110
-0.6±0.811
ΔGformkJ/mol298.1570.4776.9574.3574.7580.1567.1566.75
ΔSformJ/mol K298.150.07-252.45-252.45-248.95-248.85-248.95-248.95
S0J/mol K298.150.317293.335293.335296.825296.885296.755296.755297.426
307.889
S0-scaledJ/mol K298.15295.696
ZPEkJ/mol298.15284.25273.66
ZPE-scaledkJ/mol298.15283.26
CVJ/mol K298.1577.2±1.61268.9568.9574.3574.3574.2574.2576.46
CV-scaledJ/mol K298.1574.06
αanisoų298.151.35131.35131.3513
αxxų298.159.9159.02139.02139.0213
αyyų298.157.0657.70137.70137.6913
αzzų298.156.9057.66137.66137.6613
μxxD298.150.3950.36130.38130.3813
μyyD298.150.1150.10130.11130.1013
μzzD298.150.1250.11130.12130.1213
θxxBuckingham298.150.2650.29130.48130.4713
θyyBuckingham298.150.5150.74130.69130.7013
θzzBuckingham298.15-0.255-1.0313-1.1713-1.1713


References

  1. C. L. Yaws Yaws' Handbook of Properties for Environmental and Green Engineering, William Andrew Inc.: Beaumont, Texas (2008).
  2. T. Cheng and Y. Zhao and X. Li and F. Lin and Y. Xu and X. Zhang and Y. Li and R. Wang and L. Lai Computation of octanol- water partition coefficients by guiding an additive model with knowledge., J. Chem. Inf. Model. 47, 2140-2148 (2007).
  3. C. L. Yaws Yaws' Handbook of Properties for Aqueous Systems, William Andrew Inc.: Beaumont, Texas (2012).
  4. Aleksandr V. Marenich and Christopher J. Cramer and Donald G. Truhlar Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B 113, 6378-6396 (2009). DOI
  5. Mohammad M. Ghahremanpour and Paul J. van Maaren and David van der Spoel The Alexandria Library: A Quantum-Chemical Database of Molecular Properties for Force Field Development, Sci. Data 5, 180062 (2018). DOI
  6. David van der Spoel and Mohammad M. Ghahremanpour and Justin Lemkul Small Molecule Thermochemistry: A Tool For Empirical Force Field Development, J. Phys. Chem. A 122, 8982–8988 (2018). DOI
  7. R. L. Rowley and W. V. Wilding and J. L. Oscarson and Y. Yang and N. F. Giles Data Compilation of Pure Chemical Properties (Design Institute for Physical Properties, American Institute for Chemical Engineering, New York (2012).
  8. Ludwig Ludwig's Applied Process Design for Chemical Petrochemical Plants, Volume 1 (4th Edition), ().
  9. C. L. Yaws Yaws' Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Knovel (2009).
  10. D. R. Lide CRC Handbook of Chemistry and Physics 90th edition, CRC Press: Cleveland, Ohio (2009).
  11. Knovel Knovel Critical Tables (2nd Edition), Knovel (2008).
  12. Mohammad M. Ghahremanpour and Paul J. van Maaren and Jonas C. Ditz and Roland Lindh and David van der Spoel Large-Scale Calculations of Gas Phase Thermochemistry: Enthalpy of Formation, Standard Entropy and Heat Capacity, J. Chem. Phys. 145, 114305 (2016). DOI
  13. Mohammad Mehdi Ghahremanpour and Paul J. van Maaren and Carl Caleman and Geoffrey R. Hutchison and David van der Spoel Polarizable Drude Model with s-type Gaussian or Slater Charge Density for General Molecular Mechanics Force Fields, J. Chem. Theory Comput. 14, 5553-5566 (2018). DOI