Summary

IUPAC name1-bromobutane
Synonyms109-65-9, InChI=1S/C4H9Br/c1-2-3-4-5/h2-4H2,1H3, bromobutane, butyl bromid
CAS number109-65-9
ChemSpider ID7711
PubChem ID8002
Molecular weight137.018 Da
FormulaC4H9Br
Multiplicity1
Point groupCs
Symmetry number1
Rotatable bonds2
StdInChiInChI=1S/C4H9Br/c1-2-3-4-5/h2-4H2,1H3


Liquid properties

PropertyUnitT (K)ExperimentGAFF-ESP-2012OPLSCGenFFCOSMO-RSkowwinGAFF-ESPXlogP3
ρg/l293.151325.4±0.211313.6±0.12
1316.0±0.12
1322.6±0.12
ρg/l298.151269.031317.5±0.211306.0±0.22
1268.741308.3±0.12
1314.9±0.12
1312.2±0.25
γ0.001 N/m293.1526.7621.8±0.45
γ0.001 N/m298.1525.9721.0±0.35
26.27
26.26
ε0293.157.076.5±0.116.7±0.12
7.076.7±0.22
7.0±0.22
ε0298.158.586.3±0.116.5±0.12
6.976.5±0.12
6.976.5±0.12
8.586.3±0.15
αP0.001/K293.151.1371.19±0.1211.20±0.042
1.22±0.032
1.17±0.032
αP0.001/K298.151.1441.21±0.1211.22±0.022
1.1291.24±0.022
1.19±0.022
1.21±0.035
κT1/GPa293.150.88±0.0310.84±0.022
0.86±0.022
0.81±0.022
κT1/GPa298.151.0340.93±0.0310.87±0.012
1.0370.89±0.022
1.0310.84±0.012
1.0310.90±0.015
ΔHvapkJ/mol293.1537.12840.51±0.05140.31±0.102
40.71±0.122
40.69±0.092
ΔHvapkJ/mol298.1536.60440.05±0.03139.92±0.112
36.64740.17±0.102
36.84840.26±0.102
40.53±0.095
cfluidm/s293.15801.22±21.482
806.24±21.922
784.21±19.012
cfluidm/s298.15899.174,3817.87±12.132
899.284825.52±16.092
899.177,3799.06±11.852
899.284,7
899.171,3
899.271,4
899.171,3
899.271,4
log kOW298.152.75102.8011
2.7512
2.7513

Flexible models Hydrogen constrained All bonds constrained.


Gas properties

PropertyUnitT (K)ExperimentG2G3G4CBS-QB3W1BDW1UB3LYP/aug-cc-pVTZBSCGenFFGAFF-BCC-2018GAFF-ESP-2018AXppAXpgAXps
EkJ/mol298.15340.2114325.0615
E-scaledkJ/mol298.15335.4315
ΔHformkJ/mol0-85.914-76.514-72.314-94.214
ΔHformkJ/mol298.15-109.78-120.714-111.414-106.314-128.314
-125.33
-107.17
-107.0±2.016
ΔGformkJ/mol298.15-17.88-18.814-9.514-6.114-28.114
ΔSformJ/mol K298.150.08-341.814-341.714-336.314-335.914
S0J/mol K298.150.388345.3614345.4014350.8414351.2114349.2415
370.413
S0-scaledJ/mol K298.15346.7815
ZPEkJ/mol298.15322.214307.115
ZPE-scaledkJ/mol298.15317.815
CVJ/mol K298.15103.6±2.11789.11489.01495.21495.21497.915
CV-scaledJ/mol K298.1595.115
αanisoų298.152.67182.72182.7018
αxxų298.1514.541413.061813.111813.0818
αyyų298.1510.121410.611810.611810.6118
αzzų298.159.351410.371810.371810.3718
μxxD298.152.31142.37182.30182.3118
μyyD298.150.82140.84180.84180.8418
μzzD298.15-0.0614-0.0618-0.0618-0.0618
θxxBuckingham298.15-1.4614-2.9618-2.7518-2.6618
θyyBuckingham298.150.71142.18182.14182.0718
θzzBuckingham298.150.67140.78180.61180.5818


References

  1. Carl Caleman and Paul J. van Maaren and Minyan Hong and Jochen S. Hub and Luciano T. Costa and David van der Spoel Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant, J. Chem. Theory Comput. 8, 61-74 (2012). DOI
  2. David van der Spoel et al. Convergence of MD simulations of liquids in different software packages, In preparation ().
  3. C. L. Yaws Yaws' Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Knovel (2009).
  4. Y. Marcus The Properties of Solvents, Wiley (1998).
  5. Nina Fischer and Paul J. van Maaren and Jonas C. Ditz and Ahmet Yildirim and David van der Spoel Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions, J. Chem. Theory Comput. 11, 2938-2944 (2015). DOI
  6. C. Wohlfarth Surface Tension of Pure Liquids and Binary Liquid Mixtures, Springer Verlag: http://www.springermaterials.com (2008).
  7. D. R. Lide CRC Handbook of Chemistry and Physics 90th edition, CRC Press: Cleveland, Ohio (2009).
  8. R. L. Rowley and W. V. Wilding and J. L. Oscarson and Y. Yang and N. F. Giles Data Compilation of Pure Chemical Properties (Design Institute for Physical Properties, American Institute for Chemical Engineering, New York (2012).
  9. C. L. Yaws Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Beaumont, Texas (2003).
  10. C. L. Yaws Yaws' Handbook of Properties for Environmental and Green Engineering, William Andrew Inc.: Beaumont, Texas (2008).
  11. T. Cheng and Y. Zhao and X. Li and F. Lin and Y. Xu and X. Zhang and Y. Li and R. Wang and L. Lai Computation of octanol- water partition coefficients by guiding an additive model with knowledge., J. Chem. Inf. Model. 47, 2140-2148 (2007).
  12. C. L. Yaws Yaws' Handbook of Properties for Aqueous Systems, William Andrew Inc.: Beaumont, Texas (2012).
  13. Aleksandr V. Marenich and Christopher J. Cramer and Donald G. Truhlar Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B 113, 6378-6396 (2009). DOI
  14. Mohammad M. Ghahremanpour and Paul J. van Maaren and David van der Spoel The Alexandria Library: A Quantum-Chemical Database of Molecular Properties for Force Field Development, Sci. Data 5, 180062 (2018). DOI
  15. David van der Spoel and Mohammad M. Ghahremanpour and Justin Lemkul Small Molecule Thermochemistry: A Tool For Empirical Force Field Development, J. Phys. Chem. A 122, 8982–8988 (2018). DOI
  16. Knovel Knovel Critical Tables (2nd Edition), Knovel (2008).
  17. Mohammad M. Ghahremanpour and Paul J. van Maaren and Jonas C. Ditz and Roland Lindh and David van der Spoel Large-Scale Calculations of Gas Phase Thermochemistry: Enthalpy of Formation, Standard Entropy and Heat Capacity, J. Chem. Phys. 145, 114305 (2016). DOI
  18. Mohammad Mehdi Ghahremanpour and Paul J. van Maaren and Carl Caleman and Geoffrey R. Hutchison and David van der Spoel Polarizable Drude Model with s-type Gaussian or Slater Charge Density for General Molecular Mechanics Force Fields, J. Chem. Theory Comput. 14, 5553-5566 (2018). DOI